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The main issue taken up in the paper is to find optimal designs of multi-
span sandwich panels with slightly profiled steel facings and polyure-
thane foam core (PUR), which would satisfy conflicting demands of the
market, i.e. minimal variance in types of panels, maximum range of ap-
plication and minimum cost. The aim is to find dimensional and material
parameters of panels which generate minimum cost and maximum length
of span under prescribed loads in ultimate and serviceability limit states.
The multi-criterion optimization problem is formulated in such a way,
where the length of the span plays two roles, namely a design variable
and a component of a vector objective function. An evolutionary algo-
rithm is used. Numerous inequality constraints are introduced in two
ways: directly and by external penalty functions.
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1. Introduction

In recent years, we have observed an increase in practical applications of san-
dwich panels in civil engineering and mechanical constructions (Hassinen et al.,
1997; Magnucka-Blandzi and Magnucki, 2007). High bending stiffness coupled
with small weight and very good thermal and damping properties make san-
dwich panels an attractive structure for designers (Craig and Norman, 2004).
Easiness of transport and assembly in all weather conditions are additional
advantages. These aspects have also generated a growth in investment outlays
for computational and experimental research.
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Sandwich panels most often used in civil engineering consist of two ste-
el facings and a soft core. The facings carry normal stresses, while the three
principal roles of the core are to carry shear stresses, to protect the com-
pressed facing against buckling and to provide expected thermal insulation
(Chuda-Kowalska et al., 2007). Note that a greater elasticity modulus of the
core, which usually improves the mechanical response of a slab, is accom-
panied by greater weight and higher cost of the material, as well as wor-
se insulation coefficient. Another conflict is observed between mechanical fe-
atures and price of a panel when variable thickness or depth of the profi-
ling of facings is considered. The above conflicting relations make the tra-
ditional design difficult and give reasons for using methods of the optimal
design.

Optimal design of sandwich panels has been widely discussed in litera-
ture. Bozhevolnaya and Lyckegaard (2006) examined sandwich panels with
junctions between different core materials. The application of different co-
re materials in the same panel allows designers to improve the capability
of the core to withstand varying external shear loads. The optimal cho-
ice of the core material was also discussed in Czarnecki et al. (2008), whe-
re the basic aim was to find plates of minimal compliance. The compari-
son of sandwich panels behaviour with various combinations of materials
in three-point bending was described in Craig and Norman (2004). This
analysis served as a basis for creating failure maps which make it possi-
ble to optimize the geometry and mass of sandwich panels. Tan and Soh
(2007) discussed the two-criterion optimization (minimization of the weight
and heat transfer) for sandwich panels with a prismatic core using genetic
algorithms.

The present paper extends the class of problems discussed in literature
by considering conflicting market demands for panels of minimum cost and
the widest range of application. To fulfill the latter demand, we will look
for solutions applicable as one- or multi-span structural elements satisfying
design requirements for the maximum length of the span in typical load con-
ditions. A two-span plate can be considered as a representative case, because
it exhibits simultaneously the field and support phenomena, which are do-
minant in design. It is assumed that the panels are subjected to mechani-
cal and thermal loading. Thermal action induces high strains and stresses
in multi-span panels. Its destructive effects can be reduced by using me-
thods of optimal structural design. The interrelation of optimal values of de-
sign variables can be used in manufacturing of panels and their engineering
applications.
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2. Sandwich panel theory

This paper discuses only panels with parallel facings and soft core. The panel
under consideration with the assumed support and loading conditions is shown
in Fig. 1.

Fig. 1. Two-span sandwich panel loaded mechanically and thermally. q represents
uniformly distributed external load. T1 and T2 denote changes of temperature of

the upper and lower facings, respectively

In this case of support, uniformly distributed loading and thermal actions,
a sufficiently adequate theory is the Timoshenko beam theory generalized to
sandwich sections. This is valid however, only when the ratio of the span
length L to the plate width b is greater than 2. According to the modified
Timoshenko and Reissner theories (Stamm and Witte, 1970) we assume that:
the strains are small; the materials (steel in the facings and foam in the core)
are isotropic, homogeneous and linearly elastic; normal stress in the foam core
is negligible (σxC = σyC = 0). From the last assumption it follows that the
shear stresses in the core are constant along the transverse axis z (τxzC =
τyzC = const ). The mechanical model for the structural analysis, i.e. for the
evaluation of stresses, strains and displacements, depends on the type of facings
(flat or profiled). Deeply profiled facings made of thin sheets fall into the same
category as thick facings. Therefore, panels which have at least one deeply
profiled facing must be considered separately from those that have two flat
facings. Our attention will be focused on panels with flat or slightly profiled
facings. However, for the sake of completeness, we start the discussion with the
general case, in which at least one facing is deeply profiled or thick. The cross
sectional equilibrium condition can be written in the form of two uncoupled
differential equations (2.1)1 for vertical deflection w and (2.1)2 for the shear
strain γ (Stamm and Witte, 1970)

−
BF1 +BF2
GCAC

wV I +
B

BS
wIV =

q

BS
−
q′′

GCAC
− θ′′

(2.1)

−
BF1 +BF2
GCAC

γIV +
B

BS
γ′′ = −

q′

GCAC
−
BF1 +BF2
GCAC

θ′′′



688 R. Studziński et al.

where w and γ are functions of the position coordinate x, which is measured
along the length of the panel (see Fig. 1). The denominator GCAC represents
the shear stiffness of the core, q is the uniformly distributed transverse load
and θ is the initial curvature induced by a temperature difference ∆T between
the lower and upper face sheets. θ is positive when associated with stretching
of the lower face. The total bending stiffness B is given by

B = BF1 +BF2 +BS +BC (2.2)

where BF1, BF2 are the bending stiffness of the upper and lower facings with
respect to their own centre lines (2.3)1, BS is the bending stiffness of the
facings with respect to the global centre line of the sandwich panel (2.3)2 and
BC is the bending stiffness of the core with respect to its own centre line (2.3)3

BF i =
bt3i
12
EF i BS = btie

2
iEF i (i = 1, 2)

(2.3)

BC =
bd3

12
EC

Table 1 demonstrates typical ratios of stiffness parameters encountered in
sandwich panels with soft core.

Table 1. Stiffness parameters

Stiffness ratios Range [ ]

BC/BS 0.470-0.630
∑

BF i/BS (flat facings) 0.008-0.015
∑

BF i/BS (slightly profiled facings) 0.020-0.150
∑

BF i/BS (profiled facings) 1.00-15.00

This table demonstrates that BF1 and BF2 in sandwich panels with flat
and slightly profiled facings as well as BC are negligible. Neglecting BF1, BF2
and BC in (2.1) and (2.2), one arrives at (2.4) for sandwich beams with flat
or slightly profiled facings

wIV =
q

BS
−
q′′

GCAC
− θ′′ γ′′ = −

q′

GCAC
(2.4)

Integrating twice (2.4) and using equilibrium equations M ′ = Q, Q′ = −q, we
obtain constitutive equations (2.5) of the Timoshenko beam

M = BS(γ
′ − w′′ − θ) Q = GCACγ (2.5)
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where M = My and Q = Qz denote the bending moment and shear force,
respectively.

The normal stresses σF1, σF2 in the metal face sheets and shear stress τ
in the core are expressed by (2.6)1 and (2.6)2, respectively (see Fig. 2)

σF i = (−1)
i M

eAF i
τ =

Q

AC
(i = 1, 2) (2.6)

where AF i (i = 1, 2) represents cross-sectional areas of the face sheets and AC
represents the cross-sectional area of the core. The shear stresses τ across the
facings t1 and t2 have the 2-nd order parabolic distribution (Fig. 2). Since t1
and t2 are very small (usually 0.5mm), the shear stresses in the facings can
be neglected. This is represented by (2.6)2.

Fig. 2. Distribution of normal stresses (σ1, σ2) and shear stress (τ) in a sandwich
panel with thin flat facings

3. Formulation and solution of the optimization problem

Consider a two-span sandwich panel with flat or slightly profiled steel facings
and with equal span lengths L. The panel is subjected to temperature action
and to a uniformly distributed load, resulting from snow or wind actions. The
temperature of the face exposed to sunshine depends on the colour of the face.

The design vector x comprises five variables which specify geometric and
material parameters of the panel and the length of spans

x = [L, t1, t2, d,GC ] (3.1)

where L, t1, t2, d and GC denote the length of the span, thickness of the
external and internal face sheets, the thickness and the shear modulus of the
soft core, respectively.
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The aim of the optimization is to find a structure of the maximum length L
and minimum cost. Hence, the optimal design problem is formulated as a two-
criterion optimization with a vector objective function Γ . Our task is to find
the optimal design vector x, satisfying the constraints and providing minimum
of Γ

Γ (x) = [Γ1, Γ2] = [FC , α/L]→ min
x∈X0

(3.2)

Here FC is the total cost, L is the span length and α is the scaling coefficient.
X0 is the allowable domain of design vectors x, specified by constraints

gi(x) ¬ 0 i = 1, 2, . . . , n (3.3)

Constraints (3.3) fall into one of two categories. The first one represents beha-
vioral constraints, which are implicit functions of x. They follow from requ-
irements of the ultimate and serviceability limit states and are listed in Tables
2 and 3.

Table 2. Constraints following from the ultimate limit state

Constraint Comments

gi(x) =
|τi|

fcvd
− 1 ¬ 0

τi – shear stress

fcvd – design shear strength of core

gi(x) =
|σMi |

fyd
− 1 ¬ 0

σMi – normal stress in span or at support

fyd – design yield strength of face sheet

gi(x) =
|σwi |

fswi
− 1 ¬ 0

σwi – wrinkling stress in span or at support

fswi – design wrinkling stress in span or at

support with consequential failure

gi(x) =
|σdi |

fccd
− 1 ¬ 0

σdi – crushing stress at support

fccd – compressive strength of core

gi(x) =
FLi
fdl
− 1 ¬ 0

FLi – reaction at support

fdl – design fastener capacity

The second group takes the form of box conditions on the components
of x, they are explicit functions. The total cost FC(x) in (3.2) is expressed by
the cost c0 and specific costs of materials c1, c2. Here c0 contains constant
manufacturing costs independent of the design variables x. The parameters
c1 and c2 specify the cost of steel in face sheets and of PUR in the core. The
parameters c0, c1 and c2 were evaluated based on market data

FC(x) = c0 + c1(t1 + t2) + c2(GC)d (3.4)
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Table 3. Constraints following from the serviceability limit state

Constraint Comments

gi(x) =
|σMi |

fyk
− 1 ¬ 0

σMi – normal stress in span or at support

fyk – characteristic yield strength of face sheet

gi(x) =
|σwi |

fk swi
− 1 ¬ 0

σwi – wrinkling stress in span or at support

fk swi – characteristic wrinkling stress in span

or at support without consequential failure

gi(x) =
umaxi
ulim

− 1 ¬ 0
umaxi – maximum deflection in span

ulim – limit deflection in span

It is assumed that c0 = 35m
−1, c1 = 19200m

−2. The cost of material c2 is
considered to be a function of the shear modulus GC :

c2(GC) = [a(GC −G
0
C) + 100] m

−2 G0C = 2500 kPa (3.5)

The function c2(GC) with different values of the parameter a is illustrated in
Fig. 3.

Fig. 3. Unit cost of core material c2 as a function of the shear elasticity modulus of
the core GC

The implicit behavioral constraints are introduced by means of external
penalty functions. Penalized objective function (3.2) takes the following form

ΓP1 (x) = Γ1(x) +
24
∑

i=1

Pi(x)→ min
x

(3.6)
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where Pi(x) are penalty functions (i = 1, 2, . . . , 24)

Pi(x) =

{

0 for gi(x) ¬ 0

βigi(x) for gi(x) > 0
(3.7)

The implicit constraints are evaluated from the stress and displacement, com-
puted using FEM based on the modified Timoshenko theory (Pozorski et al.,
2007).

In practical applications, the specific costs and box conditions can be va-
lidated by manufacturing companies. The explicit constraints for t1, t2, d
and GC were assumed: t1, t2 ∈ 〈0.0004m, 0.0010m〉, d ∈ 〈0.06m, 0.20m〉 and
GC ∈ 〈2500 kPa, 4500 kPa〉. The above box conditions refer to current the
technology of manufacturing and demands of the market.

These constraints were explicitly introduced into the optimization algori-
thm.

The optimization problem was solved using the DPEA (Distributed Pa-
rallel Evolutionary Algorithms) program (Burczyński and Kuś, 2004). The
DPEA can operate on many subpopulations. The following evolutionary pa-
rameters and operators were defined: number of subpopulation 1, number of
chromosomes 20, number of genes 4, probability of mutation 0.1, probability
of crossover 1. A tournament selection was performed.

4. Optimization results: discussion

Within a general framework of the above presented formulation, a number of
specific problems have been solved in order to study the influence of rigidity
and variable cost of the core material, the temperature level and intensity of
the external load. Table 4 describes these three classes of problems. Assumed
temperatures on the lower and upper face sheets follow demands of design
codes. Both face sheets have the same thermal expansion coefficient α =
0.000012 1/◦C.

4.1. Optimal shear rigidity of the core

Pareto optimal solutions for different parameters a (Table 4) specifying
the cost of the core material as a function of GC are shown in Fig. 4.

The plots show how the total cost of a panel depends on its allowable length
of the span L. A drastic increase of the cost is observed for L > 3.5m. The
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Table 4. The optimization problems

q [kN/m] ∆T = T2 − T1 [
◦C] a [1/(kPam2)]

Variable a in the cost function of the core material

0.385 −55◦C (summer), +50◦C (winter) 0.000

0.385 −55◦C (summer), +50◦C (winter) 0.050

0.385 −55◦C (summer), +50◦C (winter) 0.100

Variable temperature T1 and T2 depending on the colour of the facing

0.385 −40◦C (summer) 0.050

0.385 −55◦C (summer) 0.050

– −40◦C/−65◦C/−90◦C 0.000

Variable load level q

0.385 −40◦C (summer) 0.050

1.540 −40◦C (summer) 0.050

0.75/1.00/2.00 – 0.000

Fig. 4. Pareto optimal solutions for different costs of the core material

plots can be a good basis for a compromise decision as to what type of panel
is worth producing. This compromise decision must account for a percentage
demand for panels of greater L, however L = 3.5m or 4.0m can be suggested.
Note that panels with L > 5.9m are unacceptable because they violate the
behavioral constraints in the presence of the assumed box conditions. This is
clearly shown in the window of Fig. 4. The external penalty function is equal
to zero only in the admissible region, where all constraints are satisfied. It
is unexpected and interesting that all three plots shown in Fig. 4 are nearly
identical. Hence, they demonstrate that the parameter a in (3.5) and in Fig. 3



694 R. Studziński et al.

has no influence on the total cost of the panel. The reason can be found in the
window of Fig. 5.

Fig. 5. Optimal slab thickness d for variable span length L

It can be seen that in the whole range of variable L the optimal value of
the shear coefficient is equal to its lower bound G = G0 = 2500 kPa. One
exceptional point for L = 2.0m in Fig. 5 does not disturb the cost function C
in Fig. 4, because it is connected with the case when a = 0.

The plot of the optimal depth of the slab d is shown in Fig. 5. It is intere-
sting that it attains its lower bound d = 0.06m for L ¬ 3.0m. In the region
L > 3.0m small differences in d for variable a result from the interchange of
active constraints. Figure 6 shows the optimal thickness of facings.

The thickness of the upper facing attains its lower bound t1 = 0.4mm
for L ¬ 4.0m. The thickness of the lower facing t2 slightly increases for
L = 3.0m. This is an effect of wrinkling at the middle support. For L = 4.0m,
the wrinkling effect is not so decisive because the plate depth d is twice as
great. In the region of L > 4.0m, a rapid increase in thickness of both facings
is observed.

4.2. The influence of temperature and load intensity on the optimal

design

Pareto optimal solutions referring to a uniformly distributed loading com-
bined with two temperature levels are shown in Fig. 7.

The Pareto solutions for the two load levels combined with temperature
action (see Table 4) are presented in Fig. 8.
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Fig. 6. Optimal thickness of facings for variable span length L: (a) upper facing t1,
(b) lower facing t2

The respective penalty functions are shown in the windows. As it was
expected, the cost increases for more severe loading and temperature condi-
tions, yet the quantitative relations between L and cost C presented in Fig. 7
and Fig. 8 are valuable, because they enable making compromise decisions
with regard to the final optimal design. It is surprising that variation of the
temperature conditions does not influence the Pareto solution (Fig. 7) in the
range L < 3m. This can be explained by the fact that for small L the optimal
cross sectional variables attain their lower bounds. To better illustrate the in-
fluence of loading and temperature action on the optimal design of a sandwich
slab next examples were solved. Figure 9 presents the Pareto optimal solutions
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Fig. 7. Pareto optimal solutions for two temperature conditions. Window: respective
penalty functions

Fig. 8. Pareto optimal solutions for two load levels. Window: respective penalty
functions

when the sandwich is subjected solely to the load or temperature actions of
variable intensity specified in the Figure.

In the case of mechanical load, the plots (continuous lines) demonstrate an
exponential increase of cost with respect to the span L. In the case of thermal
loads, the wrinkling failure at the internal support is an active constraint.
The plots (dashed lines) demonstrate a nearly linear relation between the
span L and the cost. Note that for small L, the temperature action may more
significantly contribute to the total cost than the loading.
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Fig. 9. Pareto optimal solutions for slabs subjected solely to loading (continuous
line) or to temperature action (dashed line)

5. Concluding remarks

The paper presents an optimization problem, where a compromise between the
cost of the product and its widest range of applications can be reached. The
problem was formulated as a two-objective optimization of sandwich panels
under prescribed loading and temperature induced distortions, aiming at the
minimum cost and maximum length of the span. The length of the panel span
plays two roles, namely the design variable and a component of the vector
objective function. Pareto optimal solutions were computed. The associated
optimal values of design variables were presented and discussed.

The quantitative representation of the Pareto solutions can be used in
making compromise decisions by producers of sandwich panels with soft cores.
In making final decisions, the actual cost factors must be used in the objective
function, because Pareto solutions and associated optimal values of design
variables depend on the cost function. Nevertheless, the analysis carried out
in the paper allow us to draw general conclusions.

Since both the facings and the core contribute to the total cost and to
the bearing capacity of the panels, they are mutually interrelated depending
on external actions and length of the span. In principle, an increase of the
thickness of facings generates higher cost than an increase of thickness of the
core. Therefore, in the analysed cases, the optimal thickness of the facings was
often equal to its lower bound. This is in agreement with general policy of
producers to make the facings as thin as possible.
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Several optimization problems (different forms of the cost function, various
load and temperature actions) for a two-span panel were carried out. The ana-
lysis showed that for design parameters referred to the current technological
limitations, a compromise optimal panel should be designed for the range of
span lengths L up to 3.5m or 4.5m.
A further increase of the span length leads to a drastic increase of cost

generated by greater thickness of the facings and core. To respond to the
market demand for panels applicable to cases of larger spans – reaching 6.0m
– a separate type of panels should be designed. Manufacturing one type of
panels to cover the spans L ∈ 〈2.0m, 6.0m〉 is not economically viable.
The paper also shows how the interaction of the external load and tempe-

rature influences the optimal solutions. Former experience of authors allows
one to state that in the case when the temperature dominates, a smaller shear
stiffness GC of the core is preferable. This is a general principle valid for mul-
tispan panels. For one-span simply supported panels, cores with higher GC
are optimal. This is observed particularly in the case, when deflection under
a mechanical load is an active behavioral constraint.
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Ausführung, Wien

10. Tan X.H., Soh A.K., 2007, Multi-objective optimization of the sandwich pa-
nels with prismatic cores using genetic algorithms, International Journal of
Solids and Structures, 44, 5466-5480

Optymalne projektowanie płyt warstwowych z miękkim rdzeniem

Streszczenie

W pracy podejmuje się problem optymalizacji wieloprzęsłowych płyt warstwowych
z rdzeniem z poliuretanu (PUR) i okładzinami stalowymi lekko profilowanymi. Poszu-
kuje się rozwiązań, które spełnią sprzeczne wymagania rynku, mianowicie: minimali-
zację typoszeregu płyt, maksymalizację zakresu ich zastosowania oraz minimalizację
kosztu produkcji. Celem optymalizacji jest znalezienie parametrów geometrycznych
i materiałowych płyt warstwowych, które minimalizują koszt oraz maksymalizują do-
puszczalną rozpiętość dla ustalonych obciążeń i przy spełnieniu stanów granicznych
nośności i użytkowalności. W wielokryterialnym sformułowaniu problemu optymali-
zacyjnego rozpiętość pełni dwie funkcje. Jest ona równocześnie zmienną projektową
i składową wektora funkcji celu. Jako narzędzie optymalizacji wykorzystano algorytmy
genetyczne. Ograniczenia nierównościowe wprowadzono do procedury optymalizacyj-
nej za pomocą zewnętrznej funkcji kary oraz jawnie.
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